

NBA Stats Tracking Documentation

A package to simplify working with NBA player tracking stats from NBA Advanced Stats [https://www.stats.nba.com/].

Features

	Works with both tracking stats and tracking shot stats

	Aggregate stats across multiple seasons

	Aggregate tracking shot stats across multiple filters (ex Wide Open and 18-22 seconds left on the shot clock)

	Generate game logs

Quickstart Guide

	Installation

	Code Examples
	Aggregating Multiple Tracking Shot Stat Filters and/or Seasons

	Generating Tracking Shot Game Logs

	Aggregating Multiple Tracking Shot Stat Filters and Grouping by Season

	Aggregating Multiple Seasons of Tracking Stats

	Generating Tracking Game Logs

	Get Opponent Tracking Stats For An Individual Team

Documentation

	Modules
	tracking

	tracking_shots

	utils

Notes

It looks like prior to 2018-19 blocked shots aren’t included in the FGA tracking shot totals

Installation

$ pip install nba_stats_tracking

Code Examples

Aggregating Multiple Tracking Shot Stat Filters and/or Seasons

The following will get aggregate player stats for Catch and Shoot, Open or Wide-Open shots in the Regular Season and Playoffs from 2013-14 to 2019-20:

from nba_stats_tracking import tracking_shots

seasons = ['2013-14', '2014-15', '2015-16', '2016-17', '2017-18', '2018-19', '2019-20']
season_types = ['Regular Season', 'Playoffs']
def_distances = ['6+ Feet - Wide Open', '4-6 Feet - Open']
general_ranges = ['Catch and Shoot']

stats, league_totals = tracking_shots.aggregate_full_season_tracking_shot_stats_for_seasons(
 'player',
 seasons,
 season_types,
 close_def_dists=def_distances,
 general_ranges=general_ranges
)

for stat in stats:
 print(stat)
print(league_totals)

Generating Tracking Shot Game Logs

The following gets player game logs for Open and Wide Open Catch and Shoot shots for games from 02/02/2020 to 02/03/2020:

from nba_stats_tracking import tracking_shots

def_distances = ['6+ Feet - Wide Open', '4-6 Feet - Open']
general_ranges = ['Catch and Shoot']
date_from = '02/02/2020'
date_to = '02/03/2020'

game_logs = tracking_shots.generate_tracking_shot_game_logs(
 'player',
 date_from,
 date_to,
 close_def_dists=def_distances,
 general_ranges=general_ranges
)
for game_log in game_logs:
 print(game_log)

Aggregating Multiple Tracking Shot Stat Filters and Grouping by Season

The following gets player stats for Catch and Shoot, Open or Wide-Open shots in the Regular Season from 2013-14 to 2019-20 and groups the results by season:

from nba_stats_tracking import tracking_shots

seasons = ['2013-14', '2014-15', '2015-16', '2016-17', '2017-18', '2018-19', '2019-20']
season_types = ['Regular Season']
def_distances = ['6+ Feet - Wide Open', '4-6 Feet - Open']
general_ranges = ['Catch and Shoot']

stats = tracking_shots.get_tracking_shot_stats(
 'player',
 seasons,
 season_types,
 close_def_dists=def_distances,
 general_ranges=general_ranges
)

for stat in stats:
 print(stat)

Aggregating Multiple Seasons of Tracking Stats

The following gets player speed and distance stats from 2018-19 to 2019-20:

from nba_stats_tracking import tracking

stat_measure = 'SpeedDistance'
seasons = ['2018-19', '2019-20']
season_types = ['Regular Season']
entity_type = 'player'
stats, league_totals = tracking.aggregate_full_season_tracking_stats_for_seasons(
 stat_measure,
 seasons,
 season_types,
 entity_type
)

for stat in stats:
 print(stat)

print('-----------------------')
print(league_totals)

Generating Tracking Game Logs

The following gets player game logs for catch and shoot shots for games from 02/02/2020 to 02/03/2020:

from nba_stats_tracking import tracking

stat_measure = 'CatchShoot'
entity_type = 'player'
date_from = '02/02/2020'
date_to = '02/03/2020'

game_logs = tracking.generate_tracking_game_logs(stat_measure, entity_type, date_from, date_to)
for game_log in game_logs:
 print(game_log)

Get Opponent Tracking Stats For An Individual Team

The following gets opponent catch and shoot stats for the Boston Celtics in 2019-20

from nba_stats_tracking import tracking

stat_measure = 'CatchShoot'
seasons = ['2019-20']
season_types = ['Regular Season']
entity_type = 'team'
opponent_team_id = 1610612738

stats will be each team's stats against opponent_team_id
league_totals will be aggregate opponent stats for opponents of opponent_team_id
stats, league_totals = tracking.aggregate_full_season_tracking_stats_for_seasons(
 stat_measure,
 seasons,
 season_types,
 entity_type,
 opponent_team_id=opponent_team_id
)

for stat in stats:
 print(stat)
print(league_totals)

Modules

tracking

	
nba_stats_tracking.tracking.add_to_tracking_totals(totals, item)[source]

	Adds totals from item to totals

	Parameters

	
	totals (dict) – Totals to be added to

	item (dict) – Item to be added to totals dict

	Returns

	totals dict

	Return type

	dict

	
nba_stats_tracking.tracking.aggregate_full_season_tracking_stats_for_seasons(stat_measure, seasons, season_types, entity_type, **kwargs)[source]

	Aggregates full season stats for stat measure for desired filters.
Returns list of dicts for stats for each team/player and dict with league totals.

	Parameters

	
	stat_measure (str) – Options: Drives, Defense, CatchShoot, Passing, Possessions,
PullUpShot, Rebounding, Efficiency, SpeedDistance, ElbowTouch, PostTouch, PaintTouch

	seasons (list[str]) – List of seasons.Format YYYY-YY ex 2019-20

	season_types (list[str]) – List of season types. Options are Regular Season or Playoffs or Play In

	entity_type (str) – Options are player or team

	opponent_team_id (str) – (optional) nba.com team id

	Returns

	tuple with list of dicts for stats for each player/team and dict with league totals

	Return type

	tuple(list[dict], dict)

	
nba_stats_tracking.tracking.generate_tracking_game_logs(stat_measure, entity_type, date_from, date_to, **kwargs)[source]

	Generates game logs for all games between two dates for desired filters

	Parameters

	
	stat_measure (str) – Options: Drives, Defense, CatchShoot, Passing, Possessions,
PullUpShot, Rebounding, Efficiency, SpeedDistance, ElbowTouch, PostTouch, PaintTouch

	entity_type (str) – Options are player or team

	date_from (str) – Format - MM/DD/YYYY

	date_to (str) – Format - MM/DD/YYYY

	team_id_game_id_map (dict) – (optional) dict mapping team id to game id. When
getting game logs for multiple separate filters for the same date it is recommended
that you pass this in to avoid making the same request multiple times

	team_id_opponent_team_id_map (dict) – (optional) dict mapping team id to opponent team id.
When getting game logs for multiple separate filters for the same date it is recommended
that you pass this in to avoid making the same request multiple times

	player_id_team_id_map (dict) – (optional) dict mapping player id to team id. When
getting game logs for multiple separate filters for the same date it is recommended
that you pass this in to avoid making the same request multiple times

	Returns

	list of game log dicts

	Return type

	list[dict]

	
nba_stats_tracking.tracking.get_tracking_response_json_for_stat_measure(stat_measure, season, season_type, entity_type, per_mode, **kwargs)[source]

	Makes API call to NBA Advanced Stats [https://www.stats.nba.com/] and returns JSON response

	Parameters

	
	stat_measure (str) – Options: Drives, Defense, CatchShoot, Passing, Possessions,
PullUpShot, Rebounding, Efficiency, SpeedDistance, ElbowTouch, PostTouch, PaintTouch

	season (str) – Format YYYY-YY ex 2019-20

	season_type (str) – Options are Regular Season or Playoffs or Play In

	entity_type (str) – Options are player or team

	per_mode (str) – Options are PerGame and Totals

	date_from (str) – (optional) Format - MM/DD/YYYY

	date_to (str) – (optional) Format - MM/DD/YYYY

	opponent_team_id (str) – (optional) nba.com team id

	Returns

	response json

	Return type

	dict

	
nba_stats_tracking.tracking.get_tracking_stats(stat_measure, seasons, season_types, entity_type, per_mode='Totals', **kwargs)[source]

	Gets stat measure tracking stats for filter

	Parameters

	
	stat_measure (str) – Options: Drives, Defense, CatchShoot, Passing, Possessions,
PullUpShot, Rebounding, Efficiency, SpeedDistance, ElbowTouch, PostTouch, PaintTouch

	seasons (list[str]) – List of seasons.Format YYYY-YY ex 2019-20

	season_types (list[str]) – List of season types. Options are Regular Season or Playoffs or Play In

	entity_type (str) – Options are player or team

	per_mode (str) – Options are PerGame and Totals. Defaults to totals.

	date_from (str) – (optional) Format - MM/DD/YYYY

	date_to (str) – (optional) Format - MM/DD/YYYY

	opponent_team_id (str) – (optional) nba.com team id

	Returns

	list of dicts with stats for each player/team

	Return type

	list[dict]

	
nba_stats_tracking.tracking.sum_tracking_totals(entity_type, *args)[source]

	Sums totals for given dicts and grouped by entity type

	Parameters

	
	entity_type (str) – Options are player, team, opponent or league

	*args (dict) – Variable length argument list of dicts to be summed up

	Returns

	list of dicts with totals for each entity

	Return type

	list[dict]

tracking_shots

Module containing functions for accessing tracking shot stats

	
nba_stats_tracking.tracking_shots.add_to_tracking_shot_totals(totals, item)[source]

	Adds shot totals from item to totals and updates percentages

	Parameters

	
	totals (dict) – Totals to be added to

	item (dict) – Item to be added to totals dict

	Returns

	totals dict

	Return type

	dict

	
nba_stats_tracking.tracking_shots.aggregate_full_season_tracking_shot_stats_for_seasons(entity_type, seasons, season_types, **kwargs)[source]

	Aggregates full season stats for desired filters.
Returns list of dicts for stats for each team/player and dict with league totals.

	Parameters

	
	entity_type (str) – Options are player, team or opponent

	seasons (list[str]) – List of seasons.Format YYYY-YY ex 2019-20

	season_types (list[str]) – List of season types. Options are Regular Season or Playoffs or Play In

	close_def_dists (list[str]) – (optional) Options: ‘’, ‘0-2 Feet - Very Tight’,
‘2-4 Feet - Tight’,’4-6 Feet - Open’,’6+ Feet - Wide Open’

	shot_clocks (list[str]) – (optional) - Options: ‘’, ‘24-22’,
‘22-18 Very Early’, ‘18-15 Early’, ‘15-7 Average’, ‘7-4 Late’, ‘4-0 Very Late’

	shot_dists (list[str]) – (optional) - Options: ‘’, ‘>=10.0’

	touch_times (list[str]) – (optional) - Options: ‘’, ‘Touch < 2 Seconds’,
‘Touch 2-6 Seconds’, ‘Touch 6+ Seconds’

	dribble_ranges (list[str]) – (optional) - Options: ‘’, ‘0 Dribbles’, ‘1 Dribble’,
‘2 Dribbles’, ‘3-6 Dribbles’, ‘7+ Dribbles’

	general_ranges (list[str]) – (optional) - Options: ‘Overall’,
‘Catch and Shoot’, ‘Pullups’, ‘Less Than 10 ft’

	periods (list[int]) – (optional) Only get stats for specific periods

	location (str) – (optional) - Options: ‘Home’ or ‘Road’

	Returns

	tuple with list of dicts for stats for each player/team and dict with league totals

	Return type

	tuple(list[dict], dict)

	
nba_stats_tracking.tracking_shots.generate_tracking_shot_game_logs(entity_type, date_from, date_to, **kwargs)[source]

	Generates game logs for all games between two dates for desired filters

	Parameters

	
	entity_type (str) – Options are player, team or opponent

	date_from (str) – Format - MM/DD/YYYY

	date_to (str) – Format - MM/DD/YYYY

	team_id_game_id_map (dict) – (optional) dict mapping team id to game id. When
getting game logs for multiple separate filters for the same date it is recommended
that you pass this in to avoid making the same request multiple times

	team_id_opponent_team_id_map (dict) – (optional) dict mapping team id to opponent team id.
When getting game logs for multiple separate filters for the same date it is recommended
that you pass this in to avoid making the same request multiple times

	player_id_team_id_map (dict) – (optional) dict mapping player id to team id. When
getting game logs for multiple separate filters for the same date it is recommended
that you pass this in to avoid making the same request multiple times

	close_def_dists (list[str]) – (optional) Options: ‘’, ‘0-2 Feet - Very Tight’,
‘2-4 Feet - Tight’,’4-6 Feet - Open’,’6+ Feet - Wide Open’

	shot_clocks (list[str]) – (optional) - Options: ‘’, ‘24-22’,
‘22-18 Very Early’, ‘18-15 Early’, ‘15-7 Average’, ‘7-4 Late’, ‘4-0 Very Late’

	shot_dists (list[str]) – (optional) - Options: ‘’, ‘>=10.0’

	touch_times (list[str]) – (optional) - Options: ‘’, ‘Touch < 2 Seconds’,
‘Touch 2-6 Seconds’, ‘Touch 6+ Seconds’

	dribble_ranges (list[str]) – (optional) - Options: ‘’, ‘0 Dribbles’, ‘1 Dribble’,
‘2 Dribbles’, ‘3-6 Dribbles’, ‘7+ Dribbles’

	general_ranges (list[str]) – (optional) - Options: ‘Overall’,
‘Catch and Shoot’, ‘Pullups’, ‘Less Than 10 ft’

	periods (list[int]) – (optional) Only get stats for specific periods

	location (str) – (optional) - Options: ‘Home’ or ‘Road’

	Returns

	list of game log dicts

	Return type

	list[dict]

	
nba_stats_tracking.tracking_shots.get_tracking_shot_stats(entity_type, seasons, season_types, **kwargs)[source]

	Gets tracking shot stats for filters

	Parameters

	
	entity_type (str) – Options are player, team or opponent

	seasons (list[str]) – List of seasons.Format YYYY-YY ex 2019-20

	season_types (list[str]) – List of season types. Options are Regular Season or Playoffs or Play In

	close_def_dists (list[str]) – (optional) Options: ‘’, ‘0-2 Feet - Very Tight’,
‘2-4 Feet - Tight’,’4-6 Feet - Open’,’6+ Feet - Wide Open’

	shot_clocks (list[str]) – (optional) - Options: ‘’, ‘24-22’,
‘22-18 Very Early’, ‘18-15 Early’, ‘15-7 Average’, ‘7-4 Late’, ‘4-0 Very Late’

	shot_dists (list[str]) – (optional) - Options: ‘’, ‘>=10.0’

	touch_times (list[str]) – (optional) - Options: ‘’, ‘Touch < 2 Seconds’,
‘Touch 2-6 Seconds’, ‘Touch 6+ Seconds’

	dribble_ranges (list[str]) – (optional) - Options: ‘’, ‘0 Dribbles’, ‘1 Dribble’,
‘2 Dribbles’, ‘3-6 Dribbles’, ‘7+ Dribbles’

	general_ranges (list[str]) – (optional) - Options: ‘Overall’,
‘Catch and Shoot’, ‘Pullups’, ‘Less Than 10 ft’

	date_from (str) – (optional) Format - MM/DD/YYYY

	date_to (str) – (optional) Format - MM/DD/YYYY

	periods (list[int]) – (optional) Only get stats for specific periods

	location (str) – (optional) - Options: ‘Home’ or ‘Road’

	Returns

	list of dicts with stats for each player/team

	Return type

	list[dict]

	
nba_stats_tracking.tracking_shots.get_tracking_shots_response(entity_type, season, season_type, **kwargs)[source]

	Makes API call to NBA Advanced Stats [https://www.stats.nba.com/] and returns JSON response

	Parameters

	
	entity_type (str) – Options are player, team or opponent

	season (str) – Format YYYY-YY ex 2019-20

	season_type (str) – Options are Regular Season or Playoffs or Play In

	date_from (str) – (optional) Format - MM/DD/YYYY

	date_to (str) – (optional) Format - MM/DD/YYYY

	close_def_dist (str) – (optional) Defaults to “”. Options: ‘’, ‘0-2 Feet - Very Tight’,
‘2-4 Feet - Tight’,’4-6 Feet - Open’,’6+ Feet - Wide Open’

	shot_clock (str) – (optional) - Defaults to “”. Options: ‘’, ‘24-22’,
‘22-18 Very Early’, ‘18-15 Early’, ‘15-7 Average’, ‘7-4 Late’, ‘4-0 Very Late’

	shot_dist (str) – (optional) - Defaults to “”. Options: ‘’, ‘>=10.0’

	touch_time (str) – (optional) - Defaults to “”. Options: ‘’, ‘Touch < 2 Seconds’,
‘Touch 2-6 Seconds’, ‘Touch 6+ Seconds’

	dribbles (str) – (optional) - Defaults to “”. Options: ‘’, ‘0 Dribbles’, ‘1 Dribble’,
‘2 Dribbles’, ‘3-6 Dribbles’, ‘7+ Dribbles’

	general_range (str) – (optional) - Defaults to “Overall”. Options: ‘Overall’,
‘Catch and Shoot’, ‘Pullups’, ‘Less Than 10 ft’

	period (int) – (optional) Only get stats for specific period

	location (str) – (optional) - Options: ‘Home’ or ‘Road’

	Returns

	response json

	Return type

	dict

	
nba_stats_tracking.tracking_shots.sum_tracking_shot_totals(entity_type, *args)[source]

	Sums totals for given dicts and grouped by entity type

	Parameters

	
	entity_type (str) – Options are player, team, opponent or league

	*args (dict) – Variable length argument list of dicts to be summed up

	Returns

	list of dicts with totals for each entity

	Return type

	list[dict]

utils

	
nba_stats_tracking.utils.get_boxscore_response_for_game(game_id)[source]

	Gets response from boxscore endpoint

	Parameters

	game_id (str) – nba.com game id

	Returns

	response json

	Return type

	dict

	
nba_stats_tracking.utils.get_game_ids_for_date(date)[source]

	Gets game ids for all games played on a given date

	Parameters

	date (str) – Format - MM/DD/YYYY

	Returns

	list of game ids

	Return type

	list

	
nba_stats_tracking.utils.get_json_response(url, params)[source]

	Helper function to get json response for request

	Parameters

	
	url (str) – base url for api endpoint

	params (dict) – params for request

	Returns

	response json

	Return type

	dict

	
nba_stats_tracking.utils.get_player_team_map_for_date(date)[source]

	Creates a dict mapping player id to team id for all games on a given date

	Parameters

	date (str) – Format - MM/DD/YYYY

	Returns

	player id team id dict

	Return type

	dict

	
nba_stats_tracking.utils.get_scoreboard_response_json_for_date(date)[source]

	Gets response from scoreboard endpoint

	Parameters

	date (str) – Format - MM/DD/YYYY

	Returns

	response json

	Return type

	dict

	
nba_stats_tracking.utils.get_season_from_game_id(game_id)[source]

	Gets season from nba.com game id
4th and 5th digits of game id represent year season started
ex 0021900001 is for the 2019-20 season

	Parameters

	game_id (str) – nba.com game id

	Returns

	season - Format YYYY-YY ex 2019-20

	Return type

	string

	
nba_stats_tracking.utils.get_season_type_from_game_id(game_id)[source]

	Gets season type from nba.com game id
Season type is represented in 3rd digit of game id
2 is Regular Season, 4 is Playoffs

	Parameters

	game_id (str) – nba.com game id

	Returns

	season type - Regular Season or Playoffs

	Return type

	string

	
nba_stats_tracking.utils.get_team_id_maps_for_date(date)[source]

	Creates dicts mapping team id to game id and team id
to opponent team id for games on a given date

	Parameters

	date (str) – Format - MM/DD/YYYY

	Returns

	team id game id dict, team id opponent id dict

	Return type

	tuple(dict, dict)

	
nba_stats_tracking.utils.make_array_of_dicts_from_response_json(response_json, index)[source]

	Makes array of dicts from stats.nba.com response json

	Parameters

	
	response_json (dict) – dict with response from request

	index (int) – index that holds results in resultSets array

	Returns

	list of dicts with data for each row

	Return type

	list[dict]

	
nba_stats_tracking.utils.make_player_team_map_for_game(boxscore_data)[source]

	Creates a dict mapping player id to team id for a game

	Parameters

	boxscore_data (dict) – list of dicts with boxscore data for a game

	Returns

	player id team id dict

	Return type

	dict

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nba_stats_tracking	

 	
 	
 nba_stats_tracking.tracking	

 	
 	
 nba_stats_tracking.tracking_shots	

 	
 	
 nba_stats_tracking.utils	

Index

 A
 | G
 | M
 | N
 | S

A

 	
 	add_to_tracking_shot_totals() (in module nba_stats_tracking.tracking_shots)

 	add_to_tracking_totals() (in module nba_stats_tracking.tracking)

 	
 	aggregate_full_season_tracking_shot_stats_for_seasons() (in module nba_stats_tracking.tracking_shots)

 	aggregate_full_season_tracking_stats_for_seasons() (in module nba_stats_tracking.tracking)

G

 	
 	generate_tracking_game_logs() (in module nba_stats_tracking.tracking)

 	generate_tracking_shot_game_logs() (in module nba_stats_tracking.tracking_shots)

 	get_boxscore_response_for_game() (in module nba_stats_tracking.utils)

 	get_game_ids_for_date() (in module nba_stats_tracking.utils)

 	get_json_response() (in module nba_stats_tracking.utils)

 	get_player_team_map_for_date() (in module nba_stats_tracking.utils)

 	get_scoreboard_response_json_for_date() (in module nba_stats_tracking.utils)

 	
 	get_season_from_game_id() (in module nba_stats_tracking.utils)

 	get_season_type_from_game_id() (in module nba_stats_tracking.utils)

 	get_team_id_maps_for_date() (in module nba_stats_tracking.utils)

 	get_tracking_response_json_for_stat_measure() (in module nba_stats_tracking.tracking)

 	get_tracking_shot_stats() (in module nba_stats_tracking.tracking_shots)

 	get_tracking_shots_response() (in module nba_stats_tracking.tracking_shots)

 	get_tracking_stats() (in module nba_stats_tracking.tracking)

M

 	
 	make_array_of_dicts_from_response_json() (in module nba_stats_tracking.utils)

 	
 	make_player_team_map_for_game() (in module nba_stats_tracking.utils)

N

 	
 	nba_stats_tracking.tracking (module)

 	
 	nba_stats_tracking.tracking_shots (module)

 	nba_stats_tracking.utils (module)

S

 	
 	sum_tracking_shot_totals() (in module nba_stats_tracking.tracking_shots)

 	
 	sum_tracking_totals() (in module nba_stats_tracking.tracking)

 All modules for which code is available

	nba_stats_tracking.tracking

	nba_stats_tracking.tracking_shots

	nba_stats_tracking.utils

 Source code for nba_stats_tracking.tracking

import time

from dateutil.rrule import rrule, DAILY
from datetime import datetime

from nba_stats_tracking import utils

[docs]def get_tracking_response_json_for_stat_measure(
 stat_measure, season, season_type, entity_type, per_mode, **kwargs
):
 """
 Makes API call to `NBA Advanced Stats <https://www.stats.nba.com/>`_ and returns JSON response

 :param str stat_measure: Options: Drives, Defense, CatchShoot, Passing, Possessions,
 PullUpShot, Rebounding, Efficiency, SpeedDistance, ElbowTouch, PostTouch, PaintTouch
 :param str season: Format YYYY-YY ex 2019-20
 :param str season_type: Options are Regular Season or Playoffs or Play In
 :param str entity_type: Options are player or team
 :param str per_mode: Options are PerGame and Totals
 :param str date_from: (optional) Format - MM/DD/YYYY
 :param str date_to: (optional) Format - MM/DD/YYYY
 :param str opponent_team_id: (optional) nba.com team id

 :return: response json
 :rtype: dict
 """
 url = "https://stats.nba.com/stats/leaguedashptstats"

 parameters = {
 "PlayerOrTeam": entity_type.title(),
 "PtMeasureType": stat_measure,
 "Season": season,
 "SeasonType": season_type,
 "DateFrom": kwargs.get("date_from", ""),
 "DateTo": kwargs.get("date_to", ""),
 "GameScope": "",
 "LastNGames": 0,
 "LeagueID": "00",
 "Location": "",
 "Month": 0,
 "OpponentTeamID": kwargs.get("opponent_team_id", 0),
 "Outcome": "",
 "PerMode": per_mode,
 "PlayerExperience": "",
 "PlayerPosition": "",
 "SeasonSegment": "",
 "StarterBench": "",
 "VsConference": "",
 "VsDivision": "",
 }

 return utils.get_json_response(url, parameters)

[docs]def get_tracking_stats(
 stat_measure, seasons, season_types, entity_type, per_mode="Totals", **kwargs
):
 """
 Gets stat measure tracking stats for filter

 :param str stat_measure: Options: Drives, Defense, CatchShoot, Passing, Possessions,
 PullUpShot, Rebounding, Efficiency, SpeedDistance, ElbowTouch, PostTouch, PaintTouch
 :param list[str] seasons: List of seasons.Format YYYY-YY ex 2019-20
 :param list[str] season_types: List of season types. Options are Regular Season or Playoffs or Play In
 :param str entity_type: Options are player or team
 :param str per_mode: Options are PerGame and Totals. Defaults to totals.
 :param str date_from: (optional) Format - MM/DD/YYYY
 :param str date_to: (optional) Format - MM/DD/YYYY
 :param str opponent_team_id: (optional) nba.com team id
 :return: list of dicts with stats for each player/team
 :rtype: list[dict]
 """
 all_season_stats = []
 for season in seasons:
 for season_type in season_types:
 time.sleep(2)
 response_json = get_tracking_response_json_for_stat_measure(
 stat_measure, season, season_type, entity_type, per_mode, **kwargs
)
 stats = utils.make_array_of_dicts_from_response_json(response_json, 0)
 for stat in stats:
 stat["SEASON"] = f"{season} {season_type}"
 all_season_stats += stats
 return all_season_stats

[docs]def aggregate_full_season_tracking_stats_for_seasons(
 stat_measure, seasons, season_types, entity_type, **kwargs
):
 """
 Aggregates full season stats for stat measure for desired filters.
 Returns list of dicts for stats for each team/player and dict with league totals.

 :param str stat_measure: Options: Drives, Defense, CatchShoot, Passing, Possessions,
 PullUpShot, Rebounding, Efficiency, SpeedDistance, ElbowTouch, PostTouch, PaintTouch
 :param list[str] seasons: List of seasons.Format YYYY-YY ex 2019-20
 :param list[str] season_types: List of season types. Options are Regular Season or Playoffs or Play In
 :param str entity_type: Options are player or team
 :param str opponent_team_id: (optional) nba.com team id
 :return: tuple with list of dicts for stats for each player/team and dict with league totals
 :rtype: tuple(list[dict], dict)
 """
 stats_by_season = get_tracking_stats(
 stat_measure, seasons, season_types, entity_type, **kwargs
)

 stats = sum_tracking_totals(entity_type, stats_by_season)
 league_totals = sum_tracking_totals("league", stats_by_season)
 return stats, league_totals

[docs]def generate_tracking_game_logs(
 stat_measure, entity_type, date_from, date_to, **kwargs
):
 """
 Generates game logs for all games between two dates for desired filters

 :param str stat_measure: Options: Drives, Defense, CatchShoot, Passing, Possessions,
 PullUpShot, Rebounding, Efficiency, SpeedDistance, ElbowTouch, PostTouch, PaintTouch
 :param str entity_type: Options are player or team
 :param str date_from: Format - MM/DD/YYYY
 :param str date_to: Format - MM/DD/YYYY
 :param dict team_id_game_id_map: (optional) dict mapping team id to game id. When
 getting game logs for multiple separate filters for the same date it is recommended
 that you pass this in to avoid making the same request multiple times
 :param dict team_id_opponent_team_id_map: (optional) dict mapping team id to opponent team id.
 When getting game logs for multiple separate filters for the same date it is recommended
 that you pass this in to avoid making the same request multiple times
 :param dict player_id_team_id_map: (optional) dict mapping player id to team id. When
 getting game logs for multiple separate filters for the same date it is recommended
 that you pass this in to avoid making the same request multiple times
 :return: list of game log dicts
 :rtype: list[dict]
 """
 start_date = datetime.strptime(date_from, "%m/%d/%Y")
 end_date = datetime.strptime(date_to, "%m/%d/%Y")
 team_id_game_id_map = kwargs.get("team_id_game_id_map")
 team_id_opponent_team_id_map = kwargs.get("team_id_opponent_team_id_map")
 player_id_team_id_map = kwargs.get("player_id_team_id_map")
 get_player_id_team_id_map = player_id_team_id_map is None
 get_team_id_maps = (
 team_id_game_id_map is None or team_id_opponent_team_id_map is None
)
 game_logs = []
 for dt in rrule(DAILY, dtstart=start_date, until=end_date):
 date = dt.strftime("%m/%d/%Y")
 if get_team_id_maps:
 (
 team_id_game_id_map,
 team_id_opponent_team_id_map,
) = utils.get_team_id_maps_for_date(date)
 if len(team_id_game_id_map.values()) != 0:
 if get_player_id_team_id_map:
 player_id_team_id_map = utils.get_player_team_map_for_date(date)
 date_game_id = list(team_id_game_id_map.values())[0]

 season = utils.get_season_from_game_id(date_game_id)
 season_type = utils.get_season_type_from_game_id(date_game_id)

 tracking_game_logs = get_tracking_stats(
 stat_measure,
 [season],
 [season_type],
 entity_type,
 "PerGame",
 date_from=date,
 date_to=date,
)
 if entity_type == "player":
 # need to add team id for player because results only have last team id,
 # which may not be the team for which they played the game
 for game_log in tracking_game_logs:
 game_log["TEAM_ID"] = player_id_team_id_map[game_log["PLAYER_ID"]]
 for game_log in tracking_game_logs:
 game_log["GAME_ID"] = team_id_game_id_map[game_log["TEAM_ID"]]
 game_log["OPPONENT_TEAM_ID"] = team_id_opponent_team_id_map[
 game_log["TEAM_ID"]
]
 game_logs += tracking_game_logs
 return game_logs

[docs]def sum_tracking_totals(entity_type, *args):
 r"""
 Sums totals for given dicts and grouped by entity type

 :param str entity_type: Options are player, team, opponent or league
 :param dict *args: Variable length argument list of dicts to be summed up
 :return: list of dicts with totals for each entity
 :rtype: list[dict]
 """
 if entity_type == "player":
 entity_key = "PLAYER_ID"
 elif entity_type == "team":
 entity_key = "TEAM_ID"
 elif entity_type == "league":
 totals_dict = {}
 for items in args:
 for item in items:
 totals_dict = add_to_tracking_totals(totals_dict, item)
 return totals_dict
 else:
 return []
 totals_dict = {}
 for items in args:
 for item in items:
 entity_id = item[entity_key]
 if entity_id not in totals_dict.keys():
 if entity_type == "player":
 totals_dict[entity_id] = {
 "PLAYER_ID": item["PLAYER_ID"],
 "PLAYER_NAME": item["PLAYER_NAME"],
 "TEAM_ID": item["TEAM_ID"],
 "TEAM_ABBREVIATION": item["TEAM_ABBREVIATION"],
 }
 elif entity_type == "team":
 totals_dict[entity_id] = {
 "TEAM_ID": item["TEAM_ID"],
 "TEAM_NAME": item["TEAM_NAME"],
 "TEAM_ABBREVIATION": item["TEAM_ABBREVIATION"],
 }
 totals_dict[entity_id] = add_to_tracking_totals(
 totals_dict[entity_id], item
)

 return list(totals_dict.values())

[docs]def add_to_tracking_totals(totals, item):
 """
 Adds totals from item to totals

 :param dict totals: Totals to be added to
 :param dict item: Item to be added to totals dict
 :return: totals dict
 :rtype: dict
 """
 for key, value in item.items():
 if (
 type(value) is int and key not in ["GP", "W", "L", "TEAM_ID", "PLAYER_ID"]
) or key in [
 "MIN",
 "DIST_MILES",
 "DIST_MILES_OFF",
 "DIST_MILES_DEF",
 "TIME_OF_POSS",
]:
 if value is not None:
 totals[key] = totals.get(key, 0) + value

 return totals

 Source code for nba_stats_tracking.tracking_shots

"""Module containing functions for accessing tracking shot stats"""

import time
import itertools

from dateutil.rrule import rrule, DAILY
from datetime import datetime

from nba_stats_tracking import utils

[docs]def get_tracking_shots_response(entity_type, season, season_type, **kwargs):
 """
 Makes API call to `NBA Advanced Stats <https://www.stats.nba.com/>`_ and returns JSON response

 :param str entity_type: Options are player, team or opponent
 :param str season: Format YYYY-YY ex 2019-20
 :param str season_type: Options are Regular Season or Playoffs or Play In
 :param str date_from: (optional) Format - MM/DD/YYYY
 :param str date_to: (optional) Format - MM/DD/YYYY
 :param str close_def_dist: (optional) Defaults to "". Options: '', '0-2 Feet - Very Tight',
 '2-4 Feet - Tight','4-6 Feet - Open','6+ Feet - Wide Open'
 :param str shot_clock: (optional) - Defaults to "". Options: '', '24-22',
 '22-18 Very Early', '18-15 Early', '15-7 Average', '7-4 Late', '4-0 Very Late'
 :param str shot_dist: (optional) - Defaults to "". Options: '', '>=10.0'
 :param str touch_time: (optional) - Defaults to "". Options: '', 'Touch < 2 Seconds',
 'Touch 2-6 Seconds', 'Touch 6+ Seconds'
 :param str dribbles: (optional) - Defaults to "". Options: '', '0 Dribbles', '1 Dribble',
 '2 Dribbles', '3-6 Dribbles', '7+ Dribbles'
 :param str general_range: (optional) - Defaults to "Overall". Options: 'Overall',
 'Catch and Shoot', 'Pullups', 'Less Than 10 ft'
 :param int period: (optional) Only get stats for specific period
 :param str location: (optional) - Options: 'Home' or 'Road'
 :return: response json
 :rtype: dict
 """
 if entity_type == "team":
 url = "https://stats.nba.com/stats/leaguedashteamptshot"
 elif entity_type == "player":
 url = "https://stats.nba.com/stats/leaguedashplayerptshot"
 elif entity_type == "opponent":
 url = "https://stats.nba.com/stats/leaguedashoppptshot"
 else:
 return None

 parameters = {
 "Season": season,
 "SeasonType": season_type,
 "DateFrom": kwargs.get("date_from", ""),
 "DateTo": kwargs.get("date_to", ""),
 "CloseDefDistRange": kwargs.get("close_def_dist", ""),
 "ShotClockRange": kwargs.get("shot_clock", ""),
 "ShotDistRange": kwargs.get("shot_dist", ""),
 "TouchTimeRange": kwargs.get("touch_time", ""),
 "DribbleRange": kwargs.get("dribbles", ""),
 "GeneralRange": kwargs.get("general_range", "Overall"),
 "PerMode": "Totals",
 "LeagueID": "00",
 "Period": kwargs.get("period", ""),
 "Location": kwargs.get("location", ""),
 }
 return utils.get_json_response(url, parameters)

[docs]def get_tracking_shot_stats(entity_type, seasons, season_types, **kwargs):
 """
 Gets tracking shot stats for filters

 :param str entity_type: Options are player, team or opponent
 :param list[str] seasons: List of seasons.Format YYYY-YY ex 2019-20
 :param list[str] season_types: List of season types. Options are Regular Season or Playoffs or Play In
 :param list[str] close_def_dists: (optional) Options: '', '0-2 Feet - Very Tight',
 '2-4 Feet - Tight','4-6 Feet - Open','6+ Feet - Wide Open'
 :param list[str] shot_clocks: (optional) - Options: '', '24-22',
 '22-18 Very Early', '18-15 Early', '15-7 Average', '7-4 Late', '4-0 Very Late'
 :param list[str] shot_dists: (optional) - Options: '', '>=10.0'
 :param list[str] touch_times: (optional) - Options: '', 'Touch < 2 Seconds',
 'Touch 2-6 Seconds', 'Touch 6+ Seconds'
 :param list[str] dribble_ranges: (optional) - Options: '', '0 Dribbles', '1 Dribble',
 '2 Dribbles', '3-6 Dribbles', '7+ Dribbles'
 :param list[str] general_ranges: (optional) - Options: 'Overall',
 'Catch and Shoot', 'Pullups', 'Less Than 10 ft'
 :param str date_from: (optional) Format - MM/DD/YYYY
 :param str date_to: (optional) Format - MM/DD/YYYY
 :param list[int] periods: (optional) Only get stats for specific periods
 :param str location: (optional) - Options: 'Home' or 'Road'
 :return: list of dicts with stats for each player/team
 :rtype: list[dict]
 """
 close_def_dists = kwargs.get("close_def_dists", [""])
 shot_clocks = kwargs.get("shot_clocks", [""])
 shot_dists = kwargs.get("shot_dists", [""])
 touch_times = kwargs.get("touch_times", [""])
 dribble_ranges = kwargs.get("dribble_ranges", [""])
 general_ranges = kwargs.get("general_ranges", ["Overall"])
 periods = kwargs.get("periods", [""])
 filters = list(
 itertools.product(
 close_def_dists,
 shot_clocks,
 shot_dists,
 touch_times,
 dribble_ranges,
 general_ranges,
 periods,
)
)

 all_season_stats = []
 for season in seasons:
 for season_type in season_types:
 season_stats = []
 for close_def, clock, dist, touch, dribbles, general, period in filters:
 time.sleep(2)
 response_json = get_tracking_shots_response(
 entity_type,
 season,
 season_type,
 close_def_dist=close_def,
 shot_clock=clock,
 shot_dist=dist,
 touch_time=touch,
 dribbles=dribbles,
 general_range=general,
 date_from=kwargs.get("date_from", ""),
 date_to=kwargs.get("date_to", ""),
 period=period,
 location=kwargs.get("location", ""),
)
 filter_stats = utils.make_array_of_dicts_from_response_json(
 response_json, 0
)
 season_stats.append(filter_stats)
 stats = sum_tracking_shot_totals(entity_type, *season_stats)
 entity_id_key = "PLAYER_ID" if entity_type == "player" else "TEAM_ID"
 overall_response_json = get_tracking_shots_response(
 entity_type,
 season,
 season_type,
 general_range="Overall",
 date_from=kwargs.get("date_from", ""),
 date_to=kwargs.get("date_to", ""),
)
 overall_stats = utils.make_array_of_dicts_from_response_json(
 overall_response_json, 0
)
 overall_stats_by_entity = {
 stat[entity_id_key]: {
 "FGA": stat["FGA"],
 "FG2A": stat["FG2A"],
 "FG3A": stat["FG3A"],
 }
 for stat in overall_stats
 }
 for stat in stats:
 entity_id = stat[entity_id_key]
 stat["SEASON"] = f"{season} {season_type}"
 stat["OVERALL_FGA"] = overall_stats_by_entity[entity_id]["FGA"]
 stat["OVERALL_FG2A"] = overall_stats_by_entity[entity_id]["FG2A"]
 stat["OVERALL_FG3A"] = overall_stats_by_entity[entity_id]["FG3A"]
 stat["FGA_FREQUENCY"] = (
 stat["FGA"] / stat["OVERALL_FGA"] if stat["OVERALL_FGA"] != 0 else 0
)
 stat["FG2A_FREQUENCY"] = (
 stat["FG2A"] / stat["OVERALL_FGA"]
 if stat["OVERALL_FGA"] != 0
 else 0
)
 stat["FG3A_FREQUENCY"] = (
 stat["FG3A"] / stat["OVERALL_FGA"]
 if stat["OVERALL_FGA"] != 0
 else 0
)
 stat["FREQUENCY_OF_FG2A"] = (
 stat["FG2A"] / stat["OVERALL_FG2A"]
 if stat["OVERALL_FG2A"] != 0
 else 0
)
 stat["FREQUENCY_OF_FG3A"] = (
 stat["FG3A"] / stat["OVERALL_FG3A"]
 if stat["OVERALL_FG3A"] != 0
 else 0
)
 all_season_stats += stats
 return all_season_stats

[docs]def aggregate_full_season_tracking_shot_stats_for_seasons(
 entity_type, seasons, season_types, **kwargs
):
 """
 Aggregates full season stats for desired filters.
 Returns list of dicts for stats for each team/player and dict with league totals.

 :param str entity_type: Options are player, team or opponent
 :param list[str] seasons: List of seasons.Format YYYY-YY ex 2019-20
 :param list[str] season_types: List of season types. Options are Regular Season or Playoffs or Play In
 :param list[str] close_def_dists: (optional) Options: '', '0-2 Feet - Very Tight',
 '2-4 Feet - Tight','4-6 Feet - Open','6+ Feet - Wide Open'
 :param list[str] shot_clocks: (optional) - Options: '', '24-22',
 '22-18 Very Early', '18-15 Early', '15-7 Average', '7-4 Late', '4-0 Very Late'
 :param list[str] shot_dists: (optional) - Options: '', '>=10.0'
 :param list[str] touch_times: (optional) - Options: '', 'Touch < 2 Seconds',
 'Touch 2-6 Seconds', 'Touch 6+ Seconds'
 :param list[str] dribble_ranges: (optional) - Options: '', '0 Dribbles', '1 Dribble',
 '2 Dribbles', '3-6 Dribbles', '7+ Dribbles'
 :param list[str] general_ranges: (optional) - Options: 'Overall',
 'Catch and Shoot', 'Pullups', 'Less Than 10 ft'
 :param list[int] periods: (optional) Only get stats for specific periods
 :param str location: (optional) - Options: 'Home' or 'Road'
 :return: tuple with list of dicts for stats for each player/team and dict with league totals
 :rtype: tuple(list[dict], dict)
 """
 stats_by_season = get_tracking_shot_stats(
 entity_type, seasons, season_types, **kwargs
)

 stats = sum_tracking_shot_totals(entity_type, stats_by_season)
 league_totals = sum_tracking_shot_totals("league", stats_by_season)
 return stats, league_totals

[docs]def generate_tracking_shot_game_logs(entity_type, date_from, date_to, **kwargs):
 """
 Generates game logs for all games between two dates for desired filters

 :param str entity_type: Options are player, team or opponent
 :param str date_from: Format - MM/DD/YYYY
 :param str date_to: Format - MM/DD/YYYY
 :param dict team_id_game_id_map: (optional) dict mapping team id to game id. When
 getting game logs for multiple separate filters for the same date it is recommended
 that you pass this in to avoid making the same request multiple times
 :param dict team_id_opponent_team_id_map: (optional) dict mapping team id to opponent team id.
 When getting game logs for multiple separate filters for the same date it is recommended
 that you pass this in to avoid making the same request multiple times
 :param dict player_id_team_id_map: (optional) dict mapping player id to team id. When
 getting game logs for multiple separate filters for the same date it is recommended
 that you pass this in to avoid making the same request multiple times
 :param list[str] close_def_dists: (optional) Options: '', '0-2 Feet - Very Tight',
 '2-4 Feet - Tight','4-6 Feet - Open','6+ Feet - Wide Open'
 :param list[str] shot_clocks: (optional) - Options: '', '24-22',
 '22-18 Very Early', '18-15 Early', '15-7 Average', '7-4 Late', '4-0 Very Late'
 :param list[str] shot_dists: (optional) - Options: '', '>=10.0'
 :param list[str] touch_times: (optional) - Options: '', 'Touch < 2 Seconds',
 'Touch 2-6 Seconds', 'Touch 6+ Seconds'
 :param list[str] dribble_ranges: (optional) - Options: '', '0 Dribbles', '1 Dribble',
 '2 Dribbles', '3-6 Dribbles', '7+ Dribbles'
 :param list[str] general_ranges: (optional) - Options: 'Overall',
 'Catch and Shoot', 'Pullups', 'Less Than 10 ft'
 :param list[int] periods: (optional) Only get stats for specific periods
 :param str location: (optional) - Options: 'Home' or 'Road'
 :return: list of game log dicts
 :rtype: list[dict]
 """
 start_date = datetime.strptime(date_from, "%m/%d/%Y")
 end_date = datetime.strptime(date_to, "%m/%d/%Y")
 team_id_game_id_map = kwargs.get("team_id_game_id_map")
 team_id_opponent_team_id_map = kwargs.get("team_id_opponent_team_id_map")
 player_id_team_id_map = kwargs.get("player_id_team_id_map")
 get_player_id_team_id_map = player_id_team_id_map is None
 get_team_id_maps = (
 team_id_game_id_map is None or team_id_opponent_team_id_map is None
)
 game_logs = []
 for dt in rrule(DAILY, dtstart=start_date, until=end_date):
 date = dt.strftime("%m/%d/%Y")
 if get_team_id_maps:
 (
 team_id_game_id_map,
 team_id_opponent_team_id_map,
) = utils.get_team_id_maps_for_date(date)
 if len(team_id_game_id_map.values()) != 0:
 if get_player_id_team_id_map:
 player_id_team_id_map = utils.get_player_team_map_for_date(date)
 date_game_id = list(team_id_game_id_map.values())[0]

 season = utils.get_season_from_game_id(date_game_id)
 season_type = utils.get_season_type_from_game_id(date_game_id)

 tracking_shots_data = get_tracking_shot_stats(
 entity_type,
 [season],
 [season_type],
 date_from=date,
 date_to=date,
 **kwargs,
)
 tracking_shots_game_logs = sum_tracking_shot_totals(
 entity_type, tracking_shots_data
)
 if entity_type == "player":
 # need to add team id for player because results only have PLAYER_LAST_TEAM_ID,
 # which may not be the team for which they played the game
 for game_log in tracking_shots_game_logs:
 game_log["TEAM_ID"] = player_id_team_id_map[game_log["PLAYER_ID"]]
 for game_log in tracking_shots_game_logs:
 game_log["GAME_ID"] = team_id_game_id_map[game_log["TEAM_ID"]]
 game_log["OPPONENT_TEAM_ID"] = team_id_opponent_team_id_map[
 game_log["TEAM_ID"]
]
 game_logs += tracking_shots_game_logs
 return game_logs

[docs]def sum_tracking_shot_totals(entity_type, *args):
 r"""
 Sums totals for given dicts and grouped by entity type

 :param str entity_type: Options are player, team, opponent or league
 :param dict *args: Variable length argument list of dicts to be summed up
 :return: list of dicts with totals for each entity
 :rtype: list[dict]
 """
 if entity_type == "player":
 entity_key = "PLAYER_ID"
 elif entity_type == "team" or entity_type == "opponent":
 entity_key = "TEAM_ID"
 elif entity_type == "league":
 totals_dict = {
 "FGM": 0,
 "FGA": 0,
 "FG2M": 0,
 "FG2A": 0,
 "FG3M": 0,
 "FG3A": 0,
 "OVERALL_FGA": 0,
 "OVERALL_FG2A": 0,
 "OVERALL_FG3A": 0,
 }
 for items in args:
 for item in items:
 totals_dict = add_to_tracking_shot_totals(totals_dict, item)
 return totals_dict
 else:
 return None
 totals_dict = {}
 for items in args:
 for item in items:
 entity_id = item[entity_key]
 if entity_id not in totals_dict.keys():
 if entity_type == "player":
 totals_dict[entity_id] = {
 "PLAYER_ID": item["PLAYER_ID"],
 "PLAYER_NAME": item["PLAYER_NAME"],
 "PLAYER_LAST_TEAM_ID": item["PLAYER_LAST_TEAM_ID"],
 "PLAYER_LAST_TEAM_ABBREVIATION": item[
 "PLAYER_LAST_TEAM_ABBREVIATION"
],
 "FGM": 0,
 "FGA": 0,
 "FG2M": 0,
 "FG2A": 0,
 "FG3M": 0,
 "FG3A": 0,
 "OVERALL_FGA": 0,
 "OVERALL_FG2A": 0,
 "OVERALL_FG3A": 0,
 }
 elif entity_type == "team" or entity_type == "opponent":
 totals_dict[entity_id] = {
 "TEAM_ID": item["TEAM_ID"],
 "TEAM_NAME": item["TEAM_NAME"],
 "TEAM_ABBREVIATION": item["TEAM_ABBREVIATION"],
 "FGM": 0,
 "FGA": 0,
 "FG2M": 0,
 "FG2A": 0,
 "FG3M": 0,
 "FG3A": 0,
 "OVERALL_FGA": 0,
 "OVERALL_FG2A": 0,
 "OVERALL_FG3A": 0,
 }
 totals_dict[entity_id] = add_to_tracking_shot_totals(
 totals_dict[entity_id], item
)

 return list(totals_dict.values())

[docs]def add_to_tracking_shot_totals(totals, item):
 """
 Adds shot totals from item to totals and updates percentages

 :param dict totals: Totals to be added to
 :param dict item: Item to be added to totals dict
 :return: totals dict
 :rtype: dict
 """
 totals["FGM"] += item["FGM"]
 totals["FGA"] += item["FGA"]
 totals["FG2M"] += item["FG2M"]
 totals["FG2A"] += item["FG2A"]
 totals["FG3M"] += item["FG3M"]
 totals["FG3A"] += item["FG3A"]
 totals["OVERALL_FGA"] += item.get("OVERALL_FGA", 0)
 totals["OVERALL_FG2A"] += item.get("OVERALL_FG2A", 0)
 totals["OVERALL_FG3A"] += item.get("OVERALL_FG3A", 0)
 fg2a = totals["FG2A"]
 fg2m = totals["FG2M"]
 fg3a = totals["FG3A"]
 fg3m = totals["FG3M"]
 totals["FG2_PCT"] = fg2m / fg2a if fg2a != 0 else 0
 totals["FG3_PCT"] = fg3m / fg3a if fg3a != 0 else 0
 totals["EFG_PCT"] = (1.5 * fg3m + fg2m) / (fg3a + fg2a) if (fg3a + fg2a) != 0 else 0
 totals["FGA_FREQUENCY"] = (
 totals["FGA"] / totals["OVERALL_FGA"] if totals["OVERALL_FGA"] != 0 else 0
)
 totals["FG2A_FREQUENCY"] = (
 totals["FG2A"] / totals["OVERALL_FGA"] if totals["OVERALL_FGA"] != 0 else 0
)
 totals["FG3A_FREQUENCY"] = (
 totals["FG3A"] / totals["OVERALL_FGA"] if totals["OVERALL_FGA"] != 0 else 0
)
 totals["FREQUENCY_OF_FG2A"] = (
 totals["FG2A"] / totals["OVERALL_FG2A"] if totals["OVERALL_FG2A"] != 0 else 0
)
 totals["FREQUENCY_OF_FG3A"] = (
 totals["FG3A"] / totals["OVERALL_FG3A"] if totals["OVERALL_FG3A"] != 0 else 0
)

 return totals

 Source code for nba_stats_tracking.utils

from nba_stats_tracking import (
 HEADERS,
 REQUEST_TIMEOUT,
 PLAYOFFS_STRING,
 REGULAR_SEASON_STRING,
 PLAY_IN_STRING,
)

import requests

[docs]def make_array_of_dicts_from_response_json(response_json, index):
 """
 Makes array of dicts from stats.nba.com response json

 :param dict response_json: dict with response from request
 :param int index: index that holds results in resultSets array
 :return: list of dicts with data for each row
 :rtype: list[dict]
 """
 headers = response_json["resultSets"][index]["headers"]
 rows = response_json["resultSets"][index]["rowSet"]
 return [dict(zip(headers, row)) for row in rows]

[docs]def get_json_response(url, params):
 """
 Helper function to get json response for request

 :param str url: base url for api endpoint
 :param dict params: params for request
 :return: response json
 :rtype: dict
 """
 response = requests.get(
 url, params=params, headers=HEADERS, timeout=REQUEST_TIMEOUT
)
 if response.status_code == 200:
 return response.json()
 else:
 response.raise_for_status()

[docs]def get_scoreboard_response_json_for_date(date):
 """
 Gets response from scoreboard endpoint

 :param str date: Format - MM/DD/YYYY
 :return: response json
 :rtype: dict
 """
 parameters = {"DayOffset": 0, "LeagueID": "00", "gameDate": date}
 url = "https://stats.nba.com/stats/scoreboardV2"

 return get_json_response(url, parameters)

[docs]def get_game_ids_for_date(date):
 """
 Gets game ids for all games played on a given date

 :param str date: Format - MM/DD/YYYY
 :return: list of game ids
 :rtype: list
 """
 response_json = get_scoreboard_response_json_for_date(date)
 games = make_array_of_dicts_from_response_json(response_json, 0)
 return [game["GAME_ID"] for game in games]

[docs]def get_season_from_game_id(game_id):
 """
 Gets season from nba.com game id
 4th and 5th digits of game id represent year season started
 ex 0021900001 is for the 2019-20 season

 :param str game_id: nba.com game id
 :return: season - Format YYYY-YY ex 2019-20
 :rtype: string
 """
 if game_id[4] == "9":
 return "20" + game_id[3] + game_id[4] + "-" + str(int(game_id[3]) + 1) + "0"
 else:
 return (
 "20" + game_id[3] + game_id[4] + "-" + game_id[3] + str(int(game_id[4]) + 1)
)

[docs]def get_season_type_from_game_id(game_id):
 """
 Gets season type from nba.com game id
 Season type is represented in 3rd digit of game id
 2 is Regular Season, 4 is Playoffs

 :param str game_id: nba.com game id
 :return: season type - Regular Season or Playoffs
 :rtype: string
 """
 if game_id[2] == "4":
 return PLAYOFFS_STRING
 elif game_id[2] == "2":
 return REGULAR_SEASON_STRING
 elif game_id[2] == "5":
 return PLAY_IN_STRING
 return None

[docs]def get_boxscore_response_for_game(game_id):
 """
 Gets response from boxscore endpoint

 :param str game_id: nba.com game id
 :return: response json
 :rtype: dict
 """
 url = "https://stats.nba.com/stats/boxscoretraditionalv2"
 parameters = {
 "GameId": game_id,
 "StartPeriod": 0,
 "EndPeriod": 10,
 "RangeType": 2,
 "StartRange": 0,
 "EndRange": 55800,
 }

 return get_json_response(url, parameters)

[docs]def get_team_id_maps_for_date(date):
 """
 Creates dicts mapping team id to game id and team id
 to opponent team id for games on a given date

 :param str date: Format - MM/DD/YYYY
 :return: team id game id dict, team id opponent id dict
 :rtype: tuple(dict, dict)
 """
 response_json = get_scoreboard_response_json_for_date(date)
 games = make_array_of_dicts_from_response_json(response_json, 0)
 team_id_game_id_map = {}
 team_id_opponent_id_map = {}
 for game in games:
 team_id_game_id_map[game["HOME_TEAM_ID"]] = game["GAME_ID"]
 team_id_game_id_map[game["VISITOR_TEAM_ID"]] = game["GAME_ID"]
 team_id_opponent_id_map[game["HOME_TEAM_ID"]] = game["VISITOR_TEAM_ID"]
 team_id_opponent_id_map[game["VISITOR_TEAM_ID"]] = game["HOME_TEAM_ID"]
 return team_id_game_id_map, team_id_opponent_id_map

[docs]def make_player_team_map_for_game(boxscore_data):
 """
 Creates a dict mapping player id to team id for a game

 :param dict boxscore_data: list of dicts with boxscore data for a game
 :return: player id team id dict
 :rtype: dict
 """
 player_game_team_map = {
 player["PLAYER_ID"]: player["TEAM_ID"] for player in boxscore_data
 }

 return player_game_team_map

[docs]def get_player_team_map_for_date(date):
 """
 Creates a dict mapping player id to team id for all games on a given date

 :param str date: Format - MM/DD/YYYY
 :return: player id team id dict
 :rtype: dict
 """
 player_game_team_map = {}
 game_ids = get_game_ids_for_date(date)
 for game_id in game_ids:
 boxscores_response = get_boxscore_response_for_game(game_id)
 boxscore_data = make_array_of_dicts_from_response_json(boxscores_response, 0)
 player_game_team_map_for_game = make_player_team_map_for_game(boxscore_data)
 player_game_team_map = {**player_game_team_map, **player_game_team_map_for_game}
 return player_game_team_map

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 NBA Stats Tracking Documentation

 		
 Installation

 		
 Code Examples

 		
 Aggregating Multiple Tracking Shot Stat Filters and/or Seasons

 		
 Generating Tracking Shot Game Logs

 		
 Aggregating Multiple Tracking Shot Stat Filters and Grouping by Season

 		
 Aggregating Multiple Seasons of Tracking Stats

 		
 Generating Tracking Game Logs

 		
 Get Opponent Tracking Stats For An Individual Team

 		
 Modules

 		
 tracking

 		
 tracking_shots

 		
 utils

